Digger magazine

Serving the Northwest Nursery Industry for Over 50 Years

  • Farwest-50th-banner-DM.com-728x90-1.jpg
  • NGW-728x90-v2.png
  • Digger-Employment_banner-2020-728x90px.jpg
  • NG-Survey-banner-728x90-1.jpg
  • Home
  • Articles
    • Nursery News
    • Features
    • Plants
    • Growing Knowledge
    • Operations
    • Nursery Country
  • Issues
  • Events
  • Farwest
  • Columns
    • Director’s Desk
    • Mike Darcy
    • Pivot Points
    • President’s Message
  • Employment Classifieds
  • Advertise
  • Subscribe to Digger
You are here: Home / Growing Knowledge / Rainwater harvesting systems for the Willamette Valley

Rainwater harvesting systems for the Willamette Valley

By Bill Goloski — Posted October 1, 2017

Rainwater Harvesting System

Figure 1. Two rainwater-harvesting systems were built at the Oregon State University’s Oak Creek Center for Urban Horticulture. A pond-less waterfall system (foreground) was built next to an aboveground cistern system (background).

The recent trend toward more extreme periods of drought has been a shock to residents of the Pacific Northwest. Many are able to maintain their landscapes at high levels only through heavy summer watering.

This has forced people of the Pacific Northwest, and people from all around the world, to rethink their water-use strategies, as the global trend has shifted toward greater sustainability.

One potential mitigation strategy for cool-humid regions, such as Oregon’s Willamette Valley, is to use rainwater harvesting systems to supplement traditional supplies. They are a logical choice for this climate zone. Although the average annual precipitation (42.7 inches in Corvallis, Oregon) is sufficient for the majority of crop production, this precipitation occurs almost exclusively in a nine-month period spanning from fall to spring. Irrigation is still required for at least three months of every year.

Our research evaluated two rainwater-harvesting systems for use in the Willamette Valley — an aboveground cistern and a belowground AQUABLOX™ matrix storage system (Figure 1). Each of these systems was set up to collect water from a roof outfitted with two identical, seamless gutters. Each gutter was fitted with a first-flush diverter — a downspout attachment that prevents particulates from entering the system (Figure 2).

Rainwater Harvesting Gutter

Figure 2. Seamless gutter with first-flush downspout diverter allowed the first several gallons of each rainfall event following an extended dry period to bypass the storage basin. The first flush of rainwater carried the majority of the particulate accumulated on the roof in the previous dry spell, and sent it to the storm drain as the same as a standard gutter. The diverter sealed off automatically after the first flush and started re-directing the rainwater to the cistern.

Aboveground system (cistern)

The aboveground system evaluated in this project was a polyethylene cistern, which represented a fundamental, low-budget system. System components include a 5,000-gallon cistern, tank gauge, floating outtake and siphon-style overflow piping.

In an attempt to keep the aboveground system as simple and carbon-neutral as possible, the pumping method used in this study was pedal power — specifically, a pump powered by the pedals of a stationary bike. However, the system could easily be adapted to an electronic pump. The aboveground system also has the benefit of being able to pump out water using gravitational forces. The total budget for this system was $3,083.

Subsurface system

The second system — an underground plastic-matrix storage system that recirculates using an aboveground waterfall feature — represents the high-tech end of the spectrum (Figure 3). This pondless waterfall storage system includes the following components: subsurface basin (4,000-gal) with structural-matrix of AQUABLOX™, ethylene propylene diene terpolymer (EPDM) pond liner, protective geotextile underlayment, recirculating waterfall feature fed from a submersible pump, water level gauge, overflow piping, external pressure pump for dispersal, and a sump pump placed outside the tank for flood prevention.

The matrix of structurally supportive plastic blocks used in this system was topped with a permeable weed-barrier cloth and covered in round river rock to sit flush with the ground surface. The open top allowed rainwater to enter the system from the surface, thus adding to the rainwater harvesting potential.

At the surface of the pondless system, piping was installed to send excess rainwater downhill from the subsurface system. Excess dirt from the excavation was mounded next to the basin and shaped into a recirculating waterfall feature. This provided constant circulation of the stored water, thus keeping it oxygenated and clean. The budget for the second system was $12,775.

Pondless Waterfall Storage System

Figure 3. The pondless waterfall storage system makes use of EPDM pond liner and protective geotextile underlayment, with Aquablox providing structural support for the pond so it can be buried under gravel. Photo courtesy of Lake Washington Institute of Technology

Findings and conclusions

The chief advantages of the aboveground system were simplicity and robustness. Installation took very little effort, and costs were low.

For downsides, the system takes up a decent amount of space and doesn’t provide any aesthetic benefits. The stored water can also become stagnant. Even though the tank had been painted black to eliminate light from entering the water column, there was still a significant layer of slime on the inner walls of the cistern and on the floating outtake. While this had no impact on the function of the tank in the first year of operation, it was decidedly a problem that the water quality decreased (via biomass accumulation) during the storage period.

The subsurface storage system was considerably more expensive than the cistern system, at $12,775 for product and excavation services. The majority of the cost was associated with the Aquablox matrix; however, structures like these are a necessary component for maximizing sub-surface storage capacity.

Another deterrent to the pond-less waterfall system is that electricity is required to power the recirculating waterfall; thus adding to the total cost of the Aquablox system. However, there is no denying the aesthetic benefit of a recirculating waterfall feature, and when considering the fact that the water remains clean throughout the storage period, it may be worth the cost.

Aboveground systems are a good choice for retrofits of existing freestanding homes, particularly in cases where aesthetics are less of a concern or the cistern’s effect on site lines can be mitigated. In addition, the large amount of space taken up by the cistern precludes its use where space is limited or where space is reserved for other uses.

In contrast, subsurface storage systems are a good choice for confined spaces or where an aboveground cistern would significantly impact aesthetics. They might be more widely appropriate when installed as part of initial construction where they can be integrated into overall building design and construction, which would reduce the per-unit cost.

For more extensive detail pertaining to the above ground cistern and below ground AQUABLOX system, reference the following publication: Olsen, C. A. Kowalewski, M. Gould and J. Lambrinos. 2017. Evaluating Two Rainwater Harvesting Systems in an Urban Setting in Oregon’s Willamette Valley. Journal of Green Building. 12(1):1-10.

Download a PDF of this article

Filed Under: Growing Knowledge Tagged With: Consumer trends, Digger, Digger magazine, drought, Education, Oregon State University, OSU, rainwater harvesting, Sustainability

NURSERY NEWS

Darcy added to OSU agricultural Diamond Pioneer Registry

Nursery industry tops list of Oregon ag commodities

Fall Creek promotes Amelie Aust to executive board chair

Hall of Famers give gift towards horticultural industry advocacy

Verl Holden retires from Oregon Garden Foundation Board

More Nursery News

FARWEST SHOW UPDATES

Secure your 2023 Farwest hotel room and save

Farwest Show to celebrate 50th anniversary in 2023

Nursery professionals connect at Farwest

These 12 products had buyers buzzing at Farwest

Nightfall Snowbell sweeps top honors in Farwest New Varieties Showcase

More Updates from Farwest

From the pages of Digger

June 2023: The Shrubs Issue

May 2023: The Sustainability Issue

April 2023: The Trees Issue

March 2023: Water Outlook 2023

February 2023: Greenhouse Issue ’23

More issues of Digger

The Value of Membership

Member Profile: Mahonia Nursery

Meet the Leader: Angela Bailey

OAN Member Profile: Oregon Flowers Inc. 

More member stories

CORONAVIRUS COVERAGE

Virtual is the new reality – for now

Trade shows in the time of COVID

A demand ‘renaissance’ for nurseries

Western Nursery & Landscape Association falls victim to pandemic

MANTS 2021 to move online due to COVID-19

More articles

Nursery Guide LIVE

Nursery Guide LIVE clicks into place

Booth spaces still available for Nursery Guide LIVE March 17–18

Nursery Guide LIVE virtual marketplace postponed due to winter storm damage

Keynote presentations at Nursery Guide LIVE virtual marketplace provide insight on green industry trends in 2021 and beyond

More Posts from this Category

​

Updates to exisiting subscriptions can be sent to info@oan.org

News

  • Nursery News
  • Growing Knowledge
  • Nursery Operations

Features

  • Plant Features
  • OAN Members
  • Oregon Nursery Country

Columns

  • Director’s Desk
  • Mike Darcy
  • Pivot Points
  • President’s Message

Resources

  • OAN Home Page
  • Job Listings
  • Subscribe to Digger
  • Advertise in Digger
  • Online Plant Search

© Copyright 2022 Oregon Association of Nurseries · Admin